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a one-to-one relationship between crystals in two 
different orientations. It rather requires an integral 
relationship between an infinite number of crystal 
orientations. 

An exhaustive description of all possible kinds of 
sample symmetry cannot be given by a normal point 
symmetry group. It rather requires black-white Shub- 
nikov groups. 

The specific case of centrosymmetric crystals is 
especially important in texture analysis in metallurgy 
since the basic metals, crystallizing in f.c.c., b.c.c, and 
h.c.p, lattices, are centrosymmetric. The determin- 
ability condition l = even for this case has attracted 
much attention in the last few years. 

The non-centrosymmetric crystal classes are more 
important in mineralogical and geological problems. 
Applications of the present considerations to non- 
centrosymmetrical crystal classes have not yet been 
reported. Investigations in this direction are presently 
being carried out and will be published elsewhere. 
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Abstract 1. Introduetlon 

The structure factor of librating or orientationally 
disordered molecules with isotropic Gaussian distri- 
bution functions is calculated exactly by numerical 
integration. The computer program with an example is 
described. The results are compared with approxi- 
mation methods which correspond to a cumulant 
expansion of the structure factor. The application to the 
refinement of the plastic phases of C2C16 and SF6 is 
shown. The influence of anharmonic distributions is 
considered. The method is compared to the analysis 
with spherical cubic harmonics. 

• 0567-7394/81/060899-05501.00 

There are many crystal structures which contain 
groups of atoms where the binding forces within a 
group are higher than those to the surrounding atoms. 
Such groups are called 'rigid molecules' if the internal 
vibration frequencies are considerably higher than the 
external or lattice mode frequencies. With this 
definition charged groups are included also. 

For rigid molecules the thermal motion can be 
treated in a good approximation as the motion of a 
rigid body. But, also, disorder which is not of thermal 
origin can then be regarded as positional or orientation- 
© 1981 International Union of Crystallography 
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al disorder of a rigid body. In both cases the number 
of parameters needed to describe the disorder of the 
atoms is reduced. This can be very important because 
the disorder will in general reduce the number of 
observable reflections (more exactly: the intensity 
contribution of the disordered group to the Bragg 
reflections) and only a limited number of parameters 
can then be refined. 

The thermal motion of a rigid molecule in a crystal 
can be described in the harmonic approximation by 
three tensors: T for the center-of-mass translational 
motion, L for the libration or torsional vibration and S 
for correlated translation and libration (Schomaker & 
Trueblood, 1968). The authors mentioned have shown 
how the conventional anisotropic temperature 
parameters of the atoms in a molecule can be 
calculated from the T, L and S tensors and vice versa. 
Most structure determinations start with the individual 
temperature parameter despite the advantage of less 
parameters in a direct T, L, S refinement (Pawley, 
1972). 

In both cases one has to correct for the positional 
parameters because the librational part of the thermal 
vibration is only approximated (ellipsoids): the move- 
ment of the atoms on a spherical surface is replaced by 
the movement along tangential planes. Correction 
factors to the structure factors have been calculated up 
to the second order of the libration angle (Willis & 
Pawley, 1970; Pawley & Willis, 1970), corresponding 
to a cumulant expansion (Johnson, 1969). 

In this work the librational part of the movement - 
or static orientational disorder with the same distri- 
bution function - will be calculated exactly by 
numerical integration. We will confine ourselves to 
isotropic librations. The computer program and the 
results for an example are described. The above- 
mentioned approximations (Willis & Pawley, 1970) are 
compared with the exact (harmonic) model. 

The application of the structure factor calculation to 
the refinement of the plastic phases of C2C16 and SF6 is 
shown. The influence of an anharmonic potential is 
tested with an example. Further discussions and a 
comparison with the analysis in cubic harmonic 
functions (Kurki-Suonio, 1967; Seymour & Pryor, 
1973; Press & H/iller, 1973) are given at the end. A 
preliminary account of the work has been presented at 
a conference (Hohlwein, 1980). 

averaged molecule with one orientation. In the fol- 
lowing we will speak of one rigid molecule in a definite 
equilibrium position and keep in mind that this is in 
general an averaged molecule. As mentioned in the 
Introduction the harmonic movement of a rigid 
molecule can be described with the three tensors T, L 
and S. If the molecule has a center of symmetry, then 
the translational and librational movement will not be 
correlated (Schomaker & Trueblood, 1968). The 
structure factor can then be written (convolution 
theorem) 

F(Q) = f r ( Q ) . F ,  ib(Q), (1) 

with the molecular Debye-Waller factor Jr, the 
scattering vector Q = k I - k 0, the wavevectors of 
scattered and incident radiation k 1, k 0 (k = k 0 = 2z~/~.) 
and the structure factor of a librating molecule F~i b with 
its center of mass at rest: 

N 

F, ib = ~ Y pn(O,~o)fn exp {i[Q.rn(0,~0)]}, (2) 
n = l  0 , ~  

for N atoms of the molecule with scattering lengthsfn, 
equilibrium positions r~(0,0), the polar angles 0,~0 which 
are defined for each atom with respect to its equilibrium 
position [z axis parallel to r~ (0,0)] and the probabilities 
pn(0,~0) that an atom n has turned away from its 
equilibrium position r n (0,0) to r~ (0,(0). 

For a harmonic and isotropic libration the prob- 
ability distributions pn(O,~o) are equal and Gaussian in 
8 and we have: 

Flib=C Y exp(--O2/2tn2)fn exp{i[Q.rn(0,~o)]}, (3) 
n,O,o 

with the normalization constant c and the mean-square 
deviation 092 of the Gaussian distribution. 

For a given unit cell, fractional coordinates xn,yn,z n 
and the Miller indices h,k,l, equation (3) becomes: 

Ell b = c ~ exp(--O2/2o92)fn exp {2zti[hxn(O,~o ) 
n,O,co 

+ ky~(O,~o) +/z~(0,~0)]t. (3a) 

Expressions (3) or (3a) can be calculated by analytic 
approximation methods (§ 5) or - as suggested here - 
numerically with a computer program. 

2. Theory 

We assume one rigid molecule per unit cell. The 
molecule is specified by the equilibrium position of its 
center of mass and by a set of several well defined 
equilibrium orientations. The different orientations have 
probabilities which have to be consistent with the lattice 
site symmetry. We construct by superposition an 

3. Calculation procedure 

To evaluate equation (3a) the Fortran program FLIB 
was written.* 

* A short description of the program has been deposited with the 
British Library Lending Division as Supplementary Publication No. 
SUP 36174 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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Around the equilibrium positions of the atoms a 
(01,tpk) grid is generated. 01 goes from 0 to 0ma x equal to 
two times the half-width of the Gaussian distribution. 
cp k runs from 0 to 2n. The step widths AO and Atp are 
chosen to be: AO = 0max/11; Atp = AO/sin O, so that the 
integration points are about equally distributed on the 
spherical surface. 

4. Structure factor as a function of the llbration angle 

As an example we have calculated with the program 
FLIB  the structure factor for an isotropically librating 
SF 6 molecule with the molecular center at rest. 

The fluorine atoms of the molecule form a regular 
octahedron with the sulfur atom at its center. SF6 has a 
plastic phase which is body-centered cubic (Dolling, 
PoweU & Sears, 1979). Therefore, the equilibrium 
positions for the F atoms were chosen on the axis, e.g. 
(0,0,0.2712). 

Fig. 1 shows the calculated structure factors for the 
first h,k,l reflections. The variation of the intensity with 
the libration angle is very irregular as a function of 
sin 0/2. Therefore, the correlation with an isotropic 
translational temperature factor [exp ( - B  sin e 0/22)] 
will be small, at least for not-too-high libration angles. 

Pawley. In the second approximation they derived: 

Flit,= f . f ,  exp [iQ.rn( 1 _ 032 + fi03,*)] 
n 

× exp [ - ½ Q  2 r2(03 2 s in2an 

-k- 03 4 COS 2 0~. - -  .].~034 sin 2 an)] 

x exp [i½Q 3 r~ o9 4 cos a .  s in '  a . ] .  (5 )  

For the above-mentioned example of SF6 we have 
compared our numerically evaluated structure factors 
with the results of equations (4) and (5). The dis- 
crepancies are expressed as R ( F )  = ~ . t lFu  -- F211/ 
~ IFltl for the first 23 h,k,l reflections which are 
observable in the plastic phase of SF6 (Dolling et al., 
1979). Fig. 2 shows the R values as a function of the 
libration angle 09. For 09 = 10 o the R value is already 
about 0.1. The second approximation does not improve 
the situation substantially. In the refinement of 
measured data the discrepancies will show up less 
clearly in the R factors because the libration angle can 
be refined to values different from the true values. An 
example for such a case will be contained in § 6. The 
errors in the numerical structure factor calculation due 
to the limited number of integration points are less than 
0.02 in R. 

5. Comparison with approximations 

Approximations of the structure factor for an isotropic 
and harmonically librating rigid molecule up to the 
second order of the mean-square libration angle 092 
have been given (Willis & Pawley, 1970). In the first 
approximation they found: 

Fn b = ~fnexp[ iQ . rn (1  _ 0 ) 2 )  _ _  ½Q2 r_n2 032 sin2a,,], (4) 
n 

with the angle a ,  between r n and Q; the index n for the 
individual atoms is missing in the paper of Willis & 

110 200 211 220 310 222 321 400 
I 

I 
i / 

' k: i 
/ I\ ,J/ 

i I A ~X / /  

,~o , , , / ~ \  / g , . . . .  , ' /  i\\ i ..-e I /" / ; X 
~ ' ' ' . ~  , ~ r  ; XX I/ , 'l 

2 I'~ ", ! ~""""'..-4~'. I ) "  I \ t / I /  
I k \ I ~ o  - -  / ~" l \  \ l  

015 020 025 030 sinOI:~ [A47 

Fig. 1. Structure factor of  an isotropical ly l ibrating SF6 molecule 
for the first h,k,l reflections. L ibrat ion angles 09 = 3, 10, 20 ° and 
full rotat ion (4n). 

6. Refinement of plastic phases 

The program FLIB  has been built into a standard 
least-squares program: L I B L S Q .  For the center-of- 
mass motion we assumed an isotropic Debye-Waller 
factor, exp (_½Q2 T2). With this we analyzed the plastic 
phases of C2C16 and SF 6. 

The results for C2C16 together with a comparison 
with other refinement models are in the following paper 
(Gerlach, Hohlwein, Prandl & Schulz, 1981). Therefore 
we mention here only one example of a refinement 
(Table 1). The R factor is quite satisfactory and is 
better or about equal to those of other models with 
more parameters. The approximation method [equation 
(4)] gives considerably different parameters and a 
higher R value. 

03 

R (F) 0.2 

0.1 , ~ ~  

1o 2'o 
[Degree] 

Fig. 2. R factors as defined in the text between the numerical 
calculation (FLIB) and the cumulant expansions of (a) equation 
(4), and (b) equation (5), for the case of an isotropically librating 
SF 6 molecule with libration angles 09. 
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Table 1. Refinement of  the plastic phases of  C2C16 a t  

423 K (a, b) and SF 6 at 110 K (c, d) with L IBLSQ 
(a, c) and equation (4) (b, d) 

T (A) is the translational temperature parameter, and 09 (o) the 

(a) 
(b) 
(c) 
(d) 

librational angle. 

T 09 R (F) 

0.40 (2) 19.6 (3) 0.04 
0.46 (3) 15.8 (7) 0.10 
0-15 (1) 14.1 (5) 0.071 
0-16 (2) 12.2 (5) 0.089 

The plastic phase of S F  6 has already been analyzed 
with an approximation method [equation (4)] and with 
cubic harmonic functions (Dolling et al., 1979). We 
have refined their diffraction data with the Gaussian 
model and the equilibrium positions described in § 4. 
Table 1 shows the results together with values of a 
refinement with the approximation method [equation 
(4)]. With the same number of parameters a better fit is 
achieved with the exact harmonic model. 

The distribution function will be modified if the 
rotational potential contains higher-order terms, e.g. a 
quartic term (to preserve the isotropic case): 

V(O) = DO 2 + EO 4, (9) 

with constants D and E. Then 

p(0) = exp (--DO2/k T -- EO4/k T) 

= exp ( - - D ' O  2 - -  E ' 0 4 ) .  (10) 

We note that reasonable potentials can be chosen in 
direct space without worrying whether the Fourier 
transform can be found analytically. 

In order to estimate the accuracy of the Gaussian 
approximation we have refined the diffraction data of 
S F  6 in the plastic phase with free parameters D' and E '  
of equation (10). The final value of E '  is - 6  + 6. Fig. 3 
shows the distribution function for E '  = 0 and E '  = 10. 
Any deviation from the Gaussian distribution must be 
larger than shown in Fig. 3 before it can be detected 
with the limited amount of observable diffraction data. 

7. Influence of the distribution function 

If we regard the librating molecule as a single oscillator 
(Einstein model) then the Gaussian distribution follows 
from a harmonic potential V: 

V(O) = DO 2 (6) 

(for 0 ,~ 2zr) with a constant D. In the high-temperature 
approximation the distribution function p(O) is: 

p(O) = exp(-- V/kT) = exp(-- DO2/kT), (7) 

with the Boltzmann constant k and the absolute 
temperature T. The mean-square deviation o92 of the 
Gaussian distribution is then 

09: = kT/2D. (8) 

.~ 0.8 

0.4 

,~ '--0 

8 " , , 8  [Oegmel 

Fig. 3. Angular distribution functions p(O) = exp ( - -D 'O 2 - E ' O  4) 
with E '  = 0 and E '  = 10 [equation (10), § 7]. For the plastic 
phase o f S F  6 we found E '  = - 6  __ 6. 

8. Discussion and conclusion 

The structure factors for an isotropic and harmonic 
librating molecule have been calculated previously with 
approximation methods only ({}5). The second 
approximation already gives a complicated formula, 
equation (5), and is only good for relatively low 
libration angles. The advantage of a numerical calcu- 
lation of the structure factors is that for such simple 
physical models exact values are obtained. 

For the plastic phases of C2C16 and SF 6 the model of 
isotropic Gaussian librations is quite satisfactory. The 
model has a low number of parameters which is 
important as only 10 to 20 reflections are observable in 
these cases. From the Bragg reflections alone one 
cannot, of course, decide whether the Gaussian 
distributions are fully of dynamical origin or whether 
static components of orientational disorder are present. 

Deviations from a Gaussian distribution can be 
easily taken into account, as has been shown for a 
fourth-order (anharmonic) term in the rotational 
potential in § 7. Also, it will not be difficult to include 
anisotropic distributions. Distribution functions in 
direct space can often be more easily calculated from a 
physical model than the Fourier transforms. 

The application to plastic phases of simple molecular 
crystals can be extended to more complicated struc- 
tures where only a part of the structure is strongly 
librating or orientationally disordered. If the frame of 
the structure is relatively rigid there will be many 
observable reflections up to high diffraction angles. 
This can lead to long computing times if the FLIB 
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program is incorporated. However, a strongly librating 
group will contribute considerably to the reflections in 
the low-angle region only. Therefore, the structure 
refinement can be started with conventional anisotropic 
temperature factors. In a second step one can subtract 
from the observed F values calculated ones which are 
computed on the basis of the refined frame structure. 
The smaller number of relevant differences can then be 
used for a more detailed analysis of the strongly 
librating group with the L I B L S Q  program. 

For the structure determination of cubic plastic 
phases of simple molecules the cubic harmonic analysis 
has been widely adapted (e.g. Press, 1973; Levy, 
Sanger, Taylor & Wilson, 1974; More, Lefebvre & 
Fouret, 1977; Dolling et al., 1979). In this method the 
scattering density on spherical shells around the 
molecular center is expanded in symmetry-adapted 
spherical surface harmonics. This procedure is 
analogous to a Fourier expansion in a Cartesian 
coordinate system and can be called spherical Fourier 
expansion (Atoji, 1958). The expansion coefficients are 
refined with a least-squares program. This method is 
very general as no equilibrium orientations of the 
molecule are required and only shell radii, the number 
of atoms in a shell and the site symmetry enter into the 
refinement. The small amount of information inevitably 
increases the number of free parameters. The way back 
from the scattering density distribution to the orien- 
tational distribution function is in general not unique 
(Prandl, 1981) and it is also difficult to constrain the 
parameters in such a way that the two distribution 
functions are everywhere positive or zero (H/iller & 
Press, 1979). Therefore, a good refinement can lead to 
an unphysical result. Another restriction of the method 
comes from the fact that the number of parameters has 
to be low as only a small number of Bragg reflections 
are observable in plastic crystals. For the favorable 
high-symmetry case of four identical Gaussian distri- 
butions on the poles of a sphere it has been demon- 
strated (Press & H/iller, 1973) that for a relatively large 
libration angle of 15 ° one still needs at least five 
expansion coefficients. 

With these arguments we come to the conclusion 
that the cubic harmonic analysis should only be used as 

a method to find a suitable model for the orientational 
distribution function analogous to the use of Fourier 
and difference Fourier methods in normal structure 
analysis. A specific model will in general reduce the 
number of parameters and no further approximations 
are necessary if the structure factor is then calculated 
numerically as shown in this work. The parameters will 
then also have a direct geometrical or physical 
meaning. 

This investigation has been supported financially by 
the Bundesministerium fiir Forschung und Technologie 
(project No. KNF 03-41E03P; 04-45E03I). 
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